کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5761282 | 1624433 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم زراعت و اصلاح نباتات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We explore the effects of different ranges of parameter variation (RPV) on sensitivity and uncertainty analyses for ORYZA_V3 model. In this study, a latin hypercube sampling (LHS) technique is used to generate parameter sample sets, and a regression-based method is employed for the sensitivity analysis on 16 crop parameters. Then, a top-down concordance coefficient (TDCC) is calculated to assess the stability of parameter sensitivity rankings across diverse RPV. Furthermore, coefficients of variation (CV) and 90% confidence intervals (90CI) of daily model outputs are analyzed by considering uncertainty in observations. We find that the increasing RPV multiplies the CV of daily model outputs, whereas the RPV has no effect on the CV's change rule over time. The 90CI of model outputs include most of the observations when the RPV is more than ±30% perturbation. The standardized regression coefficient (SRC) of some parameters are obviously minified when the RPV is ±5% or ±50% perturbation. The results highlights the importance of RPV selection in the sensitivity and uncertainty analysis of crop model, and ±30% perturbation was suggested when the RPV cannot be specifically obtained.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Agronomy - Volume 91, November 2017, Pages 54-62
Journal: European Journal of Agronomy - Volume 91, November 2017, Pages 54-62
نویسندگان
Junwei Tan, Yuanlai Cui, Yufeng Luo,