| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 5771734 | 1630425 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the Stanley depth of powers of edge ideals
ترجمه فارسی عنوان
در عمق قدرت استانی از آرمانهای لبه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
چکیده انگلیسی
Let K be a field and S=K[x1,â¦,xn] be the polynomial ring in n variables over K. Let G be a graph with n vertices. Assume that I=I(G) is the edge ideal of G and p is the number of its bipartite connected components. We prove that for every positive integer k, the inequalities sdepth(Ik/Ik+1)â¥p and sdepth(S/Ik)â¥p hold. As a consequence, we conclude that S/Ik satisfies Stanley's inequality for every integer kâ¥nâ1. Also, it follows that Ik/Ik+1 satisfies Stanley's inequality for every integer kâ«0. Furthermore, we prove that if (i) G is a non-bipartite graph, or (ii) at least one of the connected components of G is a tree with at least one edge, then Ik satisfies Stanley's inequality for every integer kâ¥nâ1. Moreover, we verify a conjecture of the author in special cases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 489, 1 November 2017, Pages 463-474
Journal: Journal of Algebra - Volume 489, 1 November 2017, Pages 463-474
نویسندگان
S.A. Seyed Fakhari,
