کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5772197 1413351 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved critical eigenfunction restriction estimates on Riemannian manifolds with constant negative curvature
ترجمه فارسی عنوان
برآورد محدودیت های ویژه ی نقص یابی بهبود یافته در منیفولد های ریمان با منحنی ثابت منفی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
We show that one can obtain logarithmic improvements of L2 geodesic restriction estimates for eigenfunctions on 3-dimensional compact Riemannian manifolds with constant negative curvature. We obtain a (log⁡λ)−12 gain for the L2-restriction bounds, which improves the corresponding bounds of Burq, Gérard and Tzvetkov [4], Hu [10], Chen and Sogge [6]. We achieve this by adapting the approaches developed by Chen and Sogge [6], Blair and Sogge [3], Xi and the author [19]. We derive an explicit formula for the wave kernel on 3D hyperbolic space, which improves the kernel estimates from the Hadamard parametrix in Chen and Sogge [6]. We prove detailed oscillatory integral estimates with fold singularities by Phong and Stein [12] and use the Poincaré half-space model to establish bounds for various derivatives of the distance function restricted to geodesic segments on the universal cover H3.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 272, Issue 11, 1 June 2017, Pages 4642-4670
نویسندگان
,