کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5772442 | 1413369 | 2017 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Embedded eigenvalues and Neumann-Wigner potentials for relativistic Schrödinger operators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The existence of potentials for relativistic Schrödinger operators allowing eigenvalues embedded in the essential spectrum is a long-standing open problem. We construct Neumann-Wigner type potentials for the massive relativistic Schrödinger operator in one and three dimensions for which an embedded eigenvalue exists. We show that in the non-relativistic limit these potentials converge to the classical Neumann-Wigner and Moses-Tuan potentials, respectively. For the massless operator in one dimension we construct two families of potentials, different by the parities of the (generalized) eigenfunctions, for which an eigenvalue equal to zero or a zero-resonance exists, dependent on the rate of decay of the corresponding eigenfunctions. We obtain explicit formulae and observe unusual decay behaviours due to the non-locality of the operator.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 273, Issue 4, 15 August 2017, Pages 1548-1575
Journal: Journal of Functional Analysis - Volume 273, Issue 4, 15 August 2017, Pages 1548-1575
نویسندگان
József LÅrinczi, Itaru Sasaki,