کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773391 1631068 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complementary eigenvalues of graphs
ترجمه فارسی عنوان
مقادیر خاصی از نمودارها
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
In this paper, we study the Eigenvalue Complementarity Problem (EiCP) when its matrix A belongs to the class S(G)={A=[aij]:aij=aji≠0 iff ij∈E}, where G=(V,E) is a connected graph. It is shown that if all nondiagonal elements of A∈S(G) are nonpositive, then A has a unique complementary eigenvalue, which is the smallest eigenvalue of A. In particular, zero is the unique complementary eigenvalue of the Laplacian and the normalized Laplacian matrices of a connected graph. The number c(G) of complementary eigenvalues of the adjacency matrix of a connected graph G is shown to be bounded above by the number b(G) of induced nonisomorphic connected subgraphs of G. Furthermore, c(G)=b(G) if the Perron roots of the adjacency matrices of these subgraphs are all distinct. Finally, the maximum number of complementary eigenvalues for the adjacency matrices of graphs is shown to grow faster than any polynomial on the number of vertices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 527, 15 August 2017, Pages 216-231
نویسندگان
, , ,