کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5773685 | 1631344 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the scarcity of non-totally geodesic complete spacelike hypersurfaces of constant mean curvature in a Lie group with bi-invariant Lorentzian metric
ترجمه فارسی عنوان
در کمبود بیش از حد فضاهای کامل فضایی کامل جغرافیایی منحنی ثابت ثابت در یک گروه دروغ با ماتریس لورنتسی دو جانبه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
The results of this paper can be viewed as giving a sort of heuristic explanation of why it is so hard to give examples of non-totally geodesic, complete, spacelike, constant mean curvature hypersurfaces Mn of a Lorentzian group Gn+1. More precisely, let N be a timelike unit vector field on M and suppose that the Ricci curvature of G in the direction of N is greater than or equal to âH2n, where H is the mean curvature of M with respect to N. If M is compact and transversal to a timelike element of the Lie algebra of G, then we show that it is a lateral class of a Lie subgroup of G and, as such, totally geodesic in G. If M is noncompact and parabolic, then we get the same result, provided M has bounded hyperbolic Gauss map. We also discuss some related examples and, along the way, give a simple proof of the parabolicity of a Riemannian product of a compact and a parabolic Riemannian manifold.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 51, April 2017, Pages 49-64
Journal: Differential Geometry and its Applications - Volume 51, April 2017, Pages 49-64
نویسندگان
L.J. AlÃas, A. Caminha,