کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773685 1631344 2017 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the scarcity of non-totally geodesic complete spacelike hypersurfaces of constant mean curvature in a Lie group with bi-invariant Lorentzian metric
ترجمه فارسی عنوان
در کمبود بیش از حد فضاهای کامل فضایی کامل جغرافیایی منحنی ثابت ثابت در یک گروه دروغ با ماتریس لورنتسی دو جانبه
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
The results of this paper can be viewed as giving a sort of heuristic explanation of why it is so hard to give examples of non-totally geodesic, complete, spacelike, constant mean curvature hypersurfaces Mn of a Lorentzian group Gn+1. More precisely, let N be a timelike unit vector field on M and suppose that the Ricci curvature of G in the direction of N is greater than or equal to −H2n, where H is the mean curvature of M with respect to N. If M is compact and transversal to a timelike element of the Lie algebra of G, then we show that it is a lateral class of a Lie subgroup of G and, as such, totally geodesic in G. If M is noncompact and parabolic, then we get the same result, provided M has bounded hyperbolic Gauss map. We also discuss some related examples and, along the way, give a simple proof of the parabolicity of a Riemannian product of a compact and a parabolic Riemannian manifold.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 51, April 2017, Pages 49-64
نویسندگان
, ,