کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5774151 1413546 2017 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments
ترجمه فارسی عنوان
دینامیک و پروفیل های نامتقارن حالت های پایدار یک مدل اپیدمی در محیط های مضر
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
We study the dynamics of a SIS epidemic model of reaction-diffusion-advection type. The persistence of infected and susceptible populations and the global stability of the disease free equilibrium are established when the basic reproduction number is greater than or less than or equal to one, respectively. We further consider the effects of diffusion and advection on asymptotic profiles of endemic equilibrium: When the advection rate is relatively large comparing to the diffusion rates of both populations, then two populations persist and concentrate at the downstream end. As the diffusion rate of the susceptible population tends to zero, the density of the infected population decays exponentially for positive advection rate but linearly when there is no advection. Our results suggest that advection can help speed up the elimination of disease.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 263, Issue 4, 15 August 2017, Pages 2343-2373
نویسندگان
, , ,