| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5774190 | 1413549 | 2017 | 24 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation
												
											ترجمه فارسی عنوان
													رفتار وابسته به راه حل های یک مشکل مرزی آزاد مدل سازی اسپرهوئید تومور با رابطه گیبس-تامسون
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آنالیز ریاضی
												
											چکیده انگلیسی
												In this paper we study a free boundary problem modeling the growth of solid tumor spheroid. It consists of two elliptic equations describing nutrient diffusion and pressure distribution within tumor, respectively. The new feature is that nutrient concentration on the boundary is less than external supply due to a Gibbs-Thomson relation and the problem has two radial stationary solutions, which differs from widely studied tumor spheroid model with surface tension effect. We first establish local well-posedness by using a functional approach based on Fourier multiplier method and analytic semigroup theory. Then we investigate stability of each radial stationary solution. By employing a generalized principle of linearized stability, we prove that the radial stationary solution with a smaller radius is always unstable, and there exists a positive threshold value γâ of cell-to-cell adhesiveness γ, such that the radial stationary solution with a larger radius is asymptotically stable for γ>γâ, and unstable for 0<γ<γâ.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 262, Issue 10, 15 May 2017, Pages 4907-4930
											Journal: Journal of Differential Equations - Volume 262, Issue 10, 15 May 2017, Pages 4907-4930
نویسندگان
												Junde Wu, Fujun Zhou, 
											