کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774450 | 1413560 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Elliptic solutions and solitary waves of a higher order KdV-BBM long wave equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We provide conditions for the existence of hyperbolic, unbounded periodic and elliptic solutions in terms of Weierstrass â functions of both third and fifth-order KdV-BBM (Korteweg-de Vries-Benjamin-Bona-Mahony) regularized long wave equation. An analysis for the initial value problem is developed together with a local and global well-posedness theory for the third-order KdV-BBM equation. Traveling wave reduction is used together with zero boundary conditions to yield solitons and periodic unbounded solutions, while for nonzero boundary conditions we find solutions in terms of Weierstrass elliptic â functions. For the fifth-order KdV-BBM equation we show that the parameter γ=112, which leads to a Hamiltonian, represents a restriction in where there are constraint curves that never intersect a region of unbounded solitary waves. This in turn shows that only dark or bright solitons and no unbounded solutions exist. Motivated by the lack of a Hamiltonian structure for γâ 112 we develop Hk bounds, and we show for the non-Hamiltonian system that dark and bright solitons coexist together with unbounded periodic solutions. For nonzero boundary conditions, due to the complexity of the nonlinear algebraic system of coefficients of the elliptic equation we construct Weierstrass solutions for a particular set of parameters only.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 452, Issue 2, 15 August 2017, Pages 1168-1181
Journal: Journal of Mathematical Analysis and Applications - Volume 452, Issue 2, 15 August 2017, Pages 1168-1181
نویسندگان
Stefan C. Mancas, Ronald Adams,