کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5774581 1413563 2017 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Itô's rule and Lévy's theorem in vector lattices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Itô's rule and Lévy's theorem in vector lattices
چکیده انگلیسی
The change of variable formula, or Itô's rule, is studied in a Dedekind complete vector lattice E with weak order unit E. Using the functional calculus we prove that for a Hölder continuous semimartingale Xt=Xa+Mt+Bt,t∈J, and a twice continuously differentiable function f, the formula(0.1)f(Xt)=f(Xa)+∫0tf′(Xs)dMs+∫0tf′(Xs)dBs+12∫0tf″(Xs)d〈M〉s,0≤s≤t∈J holds. The first integral in the formula is an Itô integral with reference to the local martingale M and the second and third integrals are Dobrakov-type integrals of a vector valued function with reference to a vector valued measure. Using the formula, we prove Lévy's characterization of Brownian motion as being a continuous martingale with compensator tE. The proof of this result yields a concrete description of abstract Brownian motion defined in vector lattices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 455, Issue 2, 15 November 2017, Pages 979-1004
نویسندگان
, ,