کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774581 | 1413563 | 2017 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Itô's rule and Lévy's theorem in vector lattices
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The change of variable formula, or Itô's rule, is studied in a Dedekind complete vector lattice E with weak order unit E. Using the functional calculus we prove that for a Hölder continuous semimartingale Xt=Xa+Mt+Bt,tâJ, and a twice continuously differentiable function f, the formula(0.1)f(Xt)=f(Xa)+â«0tfâ²(Xs)dMs+â«0tfâ²(Xs)dBs+12â«0tfâ³(Xs)dãMãs,0â¤sâ¤tâJ holds. The first integral in the formula is an Itô integral with reference to the local martingale M and the second and third integrals are Dobrakov-type integrals of a vector valued function with reference to a vector valued measure. Using the formula, we prove Lévy's characterization of Brownian motion as being a continuous martingale with compensator tE. The proof of this result yields a concrete description of abstract Brownian motion defined in vector lattices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 455, Issue 2, 15 November 2017, Pages 979-1004
Journal: Journal of Mathematical Analysis and Applications - Volume 455, Issue 2, 15 November 2017, Pages 979-1004
نویسندگان
Jacobus J. Grobler, Coenraad C.A. Labuschagne,