کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774597 | 1413563 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Brunn-Minkowski and Prékopa-Leindler's inequalities under projection assumptions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Brunn-Minkowski's theorem says that vol((1âλ)K+λL)1/n, for K, L convex bodies, is a concave function in λ, and assuming a common hyperplane projection of K and L, it is known that the volume itself is concave. The 'a priori' natural hypothesis of a common (nâk)-plane projection of the sets turned out in the end not to imply the (1/k)-th concavity of the volume function. In this paper we show which is the, somehow, best projection type assumption that is needed in order to get concavity for vol((1âλ)K+λL)1/k, characterizing also the equality case in the corresponding inequality. Moreover, we consider the same problem for its functional analogue: the Prékopa-Leindler inequality.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 455, Issue 2, 15 November 2017, Pages 1257-1271
Journal: Journal of Mathematical Analysis and Applications - Volume 455, Issue 2, 15 November 2017, Pages 1257-1271
نویسندگان
MarÃa A. Hernández Cifre, Jesús Yepes Nicolás,