کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774729 | 1413565 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stability and sensivity analysis for conical regularization of linearly constrained least-squares problems in Hilbert spaces
ترجمه فارسی عنوان
تجزیه و تحلیل ثبات و حساسیت برای تنظیم مقادیر مخروطی مشکلات کمترین مربع خطی در فضاهای هیلبرت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
In this paper we follow the conical regularization approach given in Khan and Sama (2013) [14] for a linearly constrained least-square problem in Hilbert spaces. This regularization can be seen as a family of linearly constrained least-problem that is parametrized by a positive parameter ε. We perform a stability and sensitivity analysis by using set-valued analysis and duality tools. As a consequence, we prove that the stability of the optimal value function, the regularity of the unperturbed problem and the norm boundeness of the regularized multipliers are equivalent properties. Moreover under an additional regularity condition, we prove the stability of the regularized solutions and we find a computation formula for the contingent derivative of the optimal value function in terms of any multiplier of the unperturbed problem and the Ïw-contingent derivative of the trajectory of regularized solutions. Finally, we provide two examples to illustrate our theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 456, Issue 1, 1 December 2017, Pages 476-495
Journal: Journal of Mathematical Analysis and Applications - Volume 456, Issue 1, 1 December 2017, Pages 476-495
نویسندگان
Rubén López, Miguel Sama,