کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5774734 1413565 2017 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hyperbolic geometry on noncommutative polyballs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Hyperbolic geometry on noncommutative polyballs
چکیده انگلیسی
This paper is an introduction to the hyperbolic geometry of noncommutative polyballs Bn(H) in B(H)n1+⋯+nk, where n=(n1,…,nk)∈Nk and B(H) is the algebra of all bounded linear operators on a Hilbert space H. We use the theory of free pluriharmonic functions on polyballs and noncommutative Poisson kernels on tensor products of full Fock spaces to define hyperbolic type metrics on Bn(H), study their properties, and obtain hyperbolic versions of Schwarz-Pick lemma for free holomorphic functions on polyballs. As a consequence, the polyballs can be viewed as noncommutative hyperbolic spaces. When specialized to the regular polydisk Dk(H) (which corresponds to the case n1=⋯=nk=1), our hyperbolic metric δH is complete and invariant under the group Aut(Dk) of all free holomorphic automorphisms of Dk(H), and the δH-topology induced on Dk(H) is the usual operator norm topology. The restriction of δH to the scalar polydisk Dk is equivalent to the Kobayashi distance on Dk. Most of the results of this paper are presented in the more general setting of Harnack (resp. Poisson) parts of the closed polyball Bn(H)−.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 456, Issue 1, 1 December 2017, Pages 576-607
نویسندگان
,