کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774962 | 1413571 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Towards a Perron-Frobenius theory for eventually positive operators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This article is a contribution to the spectral theory of so-called eventually positive operators, i.e. operators T which may not be positive but whose powers Tn become positive for large enough n. While the spectral theory of such operators is well understood in finite dimensions, the infinite dimensional case has received much less attention in the literature. We show that several sensible notions of “eventual positivity” can be defined in the infinite dimensional setting, and in contrast to the finite dimensional case those notions do not in general coincide. We then prove a variety of typical Perron-Frobenius type results: we show that the spectral radius of an eventually positive operator is contained in the spectrum; we give sufficient conditions for the spectral radius to be an eigenvalue admitting a positive eigenvector; and we show that the peripheral spectrum of an eventually positive operator is a cyclic set under quite general assumptions. All our results are formulated for operators on Banach lattices, and many of them do not impose any compactness assumptions on the operator.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 453, Issue 1, 1 September 2017, Pages 317-337
Journal: Journal of Mathematical Analysis and Applications - Volume 453, Issue 1, 1 September 2017, Pages 317-337
نویسندگان
Jochen Glück,