کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5775024 1413573 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some representation theorems for sesquilinear forms
ترجمه فارسی عنوان
بعضی از قضیه های نمایندگی برای فرم های سانسکیلی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
The possibility of getting a Radon-Nikodym type theorem and a Lebesgue-like decomposition for a not necessarily positive sesquilinear Ω form defined on a vector space D, with respect to a given positive form Θ defined on D, is explored. The main result consists in showing that a sesquilinear form Ω is Θ-regular, in the sense that it has a Radon-Nikodym type representation, if and only if it satisfies a sort Cauchy-Schwarz inequality whose right hand side is implemented by a positive sesquilinear form which is Θ-absolutely continuous. In the particular case where Θ is an inner product in D, this class of sesquilinear form covers all standard examples. In the case of a form defined on a dense subspace D of Hilbert space H we give a sufficient condition for the equality Ω(ξ,η)=〈Tξ|η〉, with T a closable operator, to hold on a dense subspace of H.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 451, Issue 1, 1 July 2017, Pages 64-83
نویسندگان
, ,