کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5775444 | 1631610 | 2017 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
q-Stirling numbers: A new view
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
We show the classical q-Stirling numbers of the second kind can be expressed compactly as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1+q. We extend this enumerative result via a decomposition of a new poset Î (n,k) which we call the Stirling poset of the second kind. Its rank generating function is the q-Stirling number Sq[n,k]. The Stirling poset of the second kind supports an algebraic complex and a basis for integer homology is determined. A parallel enumerative, poset theoretic and homological study for the q-Stirling numbers of the first kind is done. Letting t=1+q we give a bijective argument showing the (q,t)-Stirling numbers of the first and second kinds are orthogonal.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 86, May 2017, Pages 50-80
Journal: Advances in Applied Mathematics - Volume 86, May 2017, Pages 50-80
نویسندگان
Yue Cai, Margaret A. Readdy,