کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5785278 1640122 2017 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Permian tectonic evolution of the Mudanjiang Ocean: Evidence from zircon U-Pb-Hf isotopes and geochemistry of a N-S trending granitoid belt in the Jiamusi Massif, NE China
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
پیش نمایش صفحه اول مقاله
Permian tectonic evolution of the Mudanjiang Ocean: Evidence from zircon U-Pb-Hf isotopes and geochemistry of a N-S trending granitoid belt in the Jiamusi Massif, NE China
چکیده انگلیسی


- Permian granitoids in the Jiamusi Massif constitute a N-S trending granitoid belt.
- The studied Permian granitic plutons formed by similar petrogenetic processes.
- A double-side subduction model is favored for the evolution of Mudanjiang Ocean.

A combined study of LA-ICP-MS zircon U-Pb dating and geochemical analyses (major and trace elements, and Hf isotopic compositions) for five Permian granitic plutons (Mingyi, Tuoyaozi, Mengjiagang, Hengtoushan, and Qingbei plutons) from the Jiamusi Massif was carried out to determine their ages, petrogenesis, and tectonic evolution. The studied granitic plutons are composed of syengranites, monzogranites, and granodiorites, and they were emplaced in the Early-Middle Permian (278-263 Ma). These granitic plutons are mostly high-K calc-alkaline and weakly peraluminous, and show consistent correlations of different oxides versus SiO2. They are all enriched in large ion lithophile elements (e.g., Rb, Th, K) and light rare earth elements, and depleted in high field strength elements (e.g., Nb, Ta, Ti) and heavy rare earth elements. And they have relatively homogeneous Hf isotopic compositions, with εHf(t) values varying from − 6.16 to + 2.95 and two-stage model ages ranging from 1681 to 1111 Ma. According to their emplacement ages, geochemical characteristics, and Hf isotopic compositions, we conclude that these granitoids might be originated from parental magmas with similar compositions but evolved different degrees of fractionation, and their magmas were derived from the partial melting of amphibolite-facies mafic lower crust. These data, combined with previous studies on contemporaneous magma-tectonic activities in the Jiamusi Massif and Songnen-Zhangguangcai Range Massif, indicate that two paralleled N-S trending Permian magmatic belts are distributed in these two massifs. The eastwards subduction of the Mudanjiang oceanic plate beneath the Jiamusi Massif induced crustal melting to produce the studied Permian N-S trending granitoids in the Jiamusi Massif. Furthermore, westwards subduction of the Mudanjiang oceanic plate beneath the Songnen-Zhangguangcai Range Massif gave rise to Permian magmatism along eastern margin of the Songnen-Zhangguangcai Range Massif. Taken together, we suggest that the Jiamusi Massif and Songnen-Zhangguangcai Range Massif were not collided before the Permian, and a double-side subduction model is favored for the tectonic evolution of the Mudanjiang Ocean during the Permian.

578

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Gondwana Research - Volume 49, September 2017, Pages 147-163
نویسندگان
, , , , , ,