کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
582537 | 1453164 | 2009 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adsorption properties of aluminum magnesium mixed hydroxide for the model anionic dye Reactive Brilliant Red K-2BP
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The use of aluminum magnesium mixed metal hydroxide (MMH) as adsorbent to remove Reactive Brilliant Red K-2BP (RBR K-2BP), as a model anionic dye, from aqueous solution was investigated. MMH was prepared by coprecipitation and was characterized by XRD, TEM and average particle diameter. Adsorption experiments were carried out as a function of pH, contact time, concentration of dye, adsorbent dosage, and temperature. The results showed that MMH was particularly effective to remove RBR K-2BP, and that the effective pH range for the dye removal was between 4.0 and 11.0, but at pHs lower than 4, dissolution of MMH took place. A significant decline of dye adsorption occurred at pHs above the isoelectric point (IEP). The adsorption of RBR K-2BP on MMH reached equilibrium within 4Â h. The appropriate adsorbent dosage was 1000Â mg/L. The interaction between the surface sites of MMH and the dye ions may be a combination of both anion exchange and surface complexation. Three kinetic models have been evaluated to fit the experimental data. It was shown that the pseudo-second-order model best described the adsorption kinetics of RBR K-2BP on MMH. The equilibrium isotherm showed that the adsorption of RBR K-2BP onto MMH was consistent with the Langmuir and Freundlich equations. And the saturated adsorption capacity of MMH for RBR K-2BP was 657.5Â mg/g. The adsorption process was endothermic in nature. MMH displayed superior treatment efficiency to the industrial dye effluents from a printing and dyeing plant with a removal efficiency of 93.8-96.7% for colored materials and 77.9-83.6% for COD.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hazardous Materials - Volume 164, Issues 2â3, 30 May 2009, Pages 1098-1104
Journal: Journal of Hazardous Materials - Volume 164, Issues 2â3, 30 May 2009, Pages 1098-1104
نویسندگان
Yujiang Li, Baoyu Gao, Tao Wu, Biao Wang, Xia Li,