کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
58482 47154 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effect of heavy aromatic sulfur compounds on sulfur in cracked naphtha
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
The effect of heavy aromatic sulfur compounds on sulfur in cracked naphtha
چکیده انگلیسی

The scope of the present study was to elucidate the effect of heavy sulfur compounds, commonly found in the gas oils, on the percentage of sulfur in gasoline range during the Fluid Catalytic Cracking (FCC) process. Five model sulfur compounds commonly found in the gas oils were studied: benzothiophene, 2-methyl-benzothiophene, 3-decyl-thiophene, dibenzothiophene and 4,6-dimethyl-dibenzothiophene. In order to maintain a realistic hydrocarbon environment each one of the heavy sulfur model compounds were diluted in conventional gas oil. Their cracking behaviour were studied using a steamed deactivated FCC catalyst, while the run tests were performed in an automated Short Contact Time Microactivity Test Unit (SCT-MAT) operated at 560 °C and 12 s run time. The experimental results indicated that the long chain alkyl-thiophene (3-decyl-thiophene) is mainly responsible for the increase of sulfur amount in the gasoline range during cracking, through dealkylation and side cracking reactions for the production of thiophene and shorter chain alkyl-thiophenes, respectively. That sulfur compound was also the most reactive one with respect to desulfurization, since it was highly cracked to H2S and decomposed to S in coke. On contrary, the polycyclic sulfur compounds did not affect the sulfur amount in gasoline, while their reactions were strongly related to their chemical structure. Thus, the main reaction pathway of the alkylated 2-methyl-benzothiophene and 4,6-dibenzothiophene during the FCC process was isomerization, while for benzothiophene and dibenzothiophene alkylation reactions were dominated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Catalysis Today - Volume 127, Issues 1–4, 30 September 2007, Pages 92–98
نویسندگان
, , , ,