کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
58602 | 47160 | 2006 | 5 صفحه PDF | دانلود رایگان |

Mesoporous carbons were prepared using commercial silica particles and a formaldehyde–resorcinol resin as a template and carbon precursor, respectively. By changing the molar ratio of template to carbon precursor, mesoporous carbons with different mesoporosities (MC-X, X represents the molar ratio of template to carbon precursor) were produced. The resulting MCs had a high-surface area and large pore volume. In particular, the highest mesoporosity was observed for MC-3. Pt catalysts-supported on MC-X were prepared using formaldehyde as a reducing agent for use as a cathode catalyst in a polymer electrolyte fuel cell (PEMFC). The size of Pt crystallite was dependent on the properties of corresponding carbon support. As a whole, a carbon support with a high-surface area and high-mesoporosity served the best in terms of a high-dispersion of Pt nanoparticles. In a unit cell test of the PEMFC, a Pt catalyst with a high-mesoporosity and fine dispersion of metal showed an enhanced performance. The findings indicate that the surface area combined with the mesoporosity had a positive influence on the metal dispersion and the distribution of ionomer, leading to the enhanced cell performance.
Journal: Catalysis Today - Volume 111, Issues 3–4, 15 February 2006, Pages 171–175