کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
586218 | 1453278 | 2014 | 8 صفحه PDF | دانلود رایگان |
• An CFD code was built to reproduce the ammonia dispersion with the water curtain.
• The k–ɛ and RNG models used in natural ammonia dispersion were compared.
• The dissolution of ammonia into water droplets was taken into consideration by UDF.
• The interactions between ammonia cloud and water droplets were discussed.
• The potential and the limitations of the numerical approach were evaluated.
Using water curtain system to forced mitigate ammonia vapor cloud has been proven to be an effective measure. Currently, no engineering guidelines for designing an effective water curtain system are available, due to lack of understanding of complex interactions between ammonia vapor cloud and water droplets, especially the understanding of ammonia absorption into water droplets. This paper presents numerical calculations to reproduce the continuous ammonia release dispersion with and without the mitigating influence of a downwind water curtain using computational fluid dynamic (CFD) software ANSYS Fluent 14.0. The turbulence models k–ɛ and RNG were used to simulate the ammonia cloud dispersion without downwind water curtain. The simulated results were compared with literature using the statistical performance indicators. The RNG model represents better agreement with the experimental data and the k–ɛ model generates a slightly lesser result. The RNG model coupled with Lagrangian discrete phase model (DPM) was used to simulate the dilution effectiveness of the water curtain system. The ammonia absorption was taken into account by means of user-defined functions (UDF). The simulated effectiveness of water curtains has good agreements with the experimental results. The effectiveness of water mitigation system with and without the ammonia absorption was compared. The results display that the effectiveness mainly depends on the strong air entrainment enhanced by water droplets movement and the ammonia absorption also enhances the effectiveness of water curtain mitigation system. The study indicates that the CFD code can be satisfactorily applied in design criteria for an effective mitigation system.
Journal: Journal of Loss Prevention in the Process Industries - Volume 30, July 2014, Pages 105–112