کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5890389 1568156 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pleiotropic effects of bisphosphonates on osteosarcoma
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی تکاملی
پیش نمایش صفحه اول مقاله
Pleiotropic effects of bisphosphonates on osteosarcoma
چکیده انگلیسی
Osteosarcoma is the most common primary malignant tumor of bone and accounts for half of all primary skeletal malignancies in children and teenagers. The prognosis for patients who fail or progress on first-line chemotherapy protocols is poor, therefore, additional adjuvant therapeutic strategies are needed. A recent feasibility study has demonstrated that the nitrogen-containing bisphosphonate zoledronic acid (ZOL) can be combined safely with conventional chemotherapy. However, the pharmacodynamics of bisphosphonate therapy is not well characterized. Osteosarcoma is a highly angiogenic tumor. Recent reports of the anti-angiogenic effects of bisphosphonates prompted us to determine whether nitrogen-containing bisphosphonate (ZOL and alendronate) treatment attenuates osteosarcoma growth by inhibition of osteoclast activity, tumor-mediated angiogenesis, or direct inhibitory effects on osteosarcoma. Here, we demonstrate that bisphosphonates directly inhibit VEGFR2 expression in endothelial cells, as well as endothelial cell proliferation and migration. Additionally, bisphosphonates also decrease VEGF-A expression in osteosarcoma (K7M3) cells, resulting in reduced stimulation of endothelial cell migration in co-culture assays. ZOL also decreases VEGFR1 expression in aggressive osteosarcoma cell lines (K7M3, 143B) and induces apoptosis of these cells, but has negligible effects on less aggressive osteosarcoma cell lines (K12 and TE85). In vivo ZOL treatment results in significant reduction in osteosarcoma-initiated angiogenesis and tumor growth in a murine model of osteosarcoma. In conclusion, bisphosphonates have diverse growth inhibitory effects on osteosarcoma through: (1) activation of apoptosis and inhibition of cell proliferation, (2) inhibition of VEGF-A and VEGFR1 expression by tumor cells, (3) inhibition of tumor-induced angiogenesis, and (4) direct inhibitory actions on endothelial cells.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bone - Volume 63, June 2014, Pages 110-120
نویسندگان
, , , , , , , , ,