کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5891990 1153290 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distinct effects of loss of classical estrogen receptor signaling versus complete deletion of estrogen receptor alpha on bone
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی تکاملی
پیش نمایش صفحه اول مقاله
Distinct effects of loss of classical estrogen receptor signaling versus complete deletion of estrogen receptor alpha on bone
چکیده انگلیسی

Estrogen receptor (ER) α is a major regulator of bone metabolism which can modulate gene expression via a “classical” pathway involving direct DNA binding to estrogen-response elements (EREs) or via “non-classical” pathways involving protein–protein interactions. While the skeletal consequences of loss of ERE binding by ERα have been described, a significant unresolved question is how loss of ERE binding differs from complete loss of ERα. Thus, we compared the skeletal phenotype of wild-type (ERα+/+) and ERα knock out (ERα−/−) mice with that of mice in which the only ERα present had a knock-in mutation abolishing ERE binding (non-classical ERα knock-in [NERKI], ERα−/NERKI). All three groups were in the same genetic background (C57BL/6). As compared to both ERα+/+ and ERα−/− mice, ERα−/NERKI mice had significantly reduced cortical volumetric bone mineral density and thickness at the tibial diaphysis; this was accompanied by significant decreases in periosteal and endocortical mineral apposition rates. Colony forming unit (CFU)–fibroblast, CFU–alkaline phosphatase, and CFU–osteoblast numbers were all increased in ERα−/− compared to ERα+/+ mice, but reduced in ERα−/NERKI mice compared to the two other groups. Thus, using mice in identical genetic backgrounds, our data indicate that the presence of an ERα that cannot bind DNA but can function through protein–protein interactions may have more deleterious skeletal effects than complete loss of ERα. These findings suggest that shifting the balance of classical versus non-classical ERα signaling triggers pathways that impair bone formation. Further studies defining these pathways may lead to novel approaches to selectively modulate ER signaling for beneficial skeletal effects.

Research highlights
► Loss of DNA binding by estrogen receptor α (ERα) reduces bone mass in mice.
► These deficits are greater than in mice with complete deletion of ERα.
► Loss of DNA binding by ERα also results in reduced osteoprogenitor cells in vivo.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bone - Volume 49, Issue 2, August 2011, Pages 208–216