کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5892714 1153346 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new tool to assess the mechanical properties of bone due to collagen degradation
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی تکاملی
پیش نمایش صفحه اول مقاله
A new tool to assess the mechanical properties of bone due to collagen degradation
چکیده انگلیسی
Current clinical tools for evaluating fracture risk focus only on the mineral phase of bone. However, changes in the collagen matrix may affect bone mechanical properties, increasing fracture risk while remaining undetected by conventional screening methods such as dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS). The mechanical response tissue analyzer (MRTA) is a non-invasive, radiation-free potential clinical tool for evaluating fracture risk. The objectives of this study were two-fold: to investigate the ability of the MRTA to detect changes in mechanical properties of bone as a result of treatment with 1 M potassium hydroxide (KOH) and to evaluate the differences between male and female bone in an emu model. DXA, QUS, MRTA and three-point bending measurements were performed on ex vivo emu tibiae before and after KOH treatment. Male and female emu tibiae were endocortically treated with 1 M KOH solution for 1-14 days, resulting in negligible collagen loss (0.05%; by hydroxyproline assay) and overall mass loss (0.5%). Three-point bending and MRTA detected significant changes in modulus between days 1 and 14 of KOH treatment (− 18%) while all values measured by DXA and QUS varied by less than 2%. This close correlation between MRTA and three-point bending results support the utility of the MRTA as a clinical tool to predict fracture risk. In addition, the significant reduction in modulus contrasted with the negligible amount of collagen removal from the bone after KOH exposure. As such, the significant changes in bone mechanical properties may be due to partial debonding between the mineral and organic matrix or in situ collagen degradation rather than collagen removal. In terms of sex differences, male emu tibiae had significantly decreased failure stress and increased failure strain and toughness compared to female tibiae with increasing KOH treatment time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bone - Volume 44, Issue 5, May 2009, Pages 840-848
نویسندگان
, , , , , ,