کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5932359 1573386 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regular articleEpithelial and mesenchymal cell biologyThe Microbiota Protects against Ischemia/Reperfusion-Induced Intestinal Injury through Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) Signaling
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Regular articleEpithelial and mesenchymal cell biologyThe Microbiota Protects against Ischemia/Reperfusion-Induced Intestinal Injury through Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) Signaling
چکیده انگلیسی

Nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, induces autophagy on detection of muramyl dipeptide (MDP), a component of microbial cell walls. The role of bacteria and NOD2 signaling toward ischemia/reperfusion (I/R)-induced intestinal injury response is unknown. Herein, we report that I/R-induced intestinal injury in germ-free (GF) C57BL/6 wild-type (WT) mice is worse than in conventionally derived mice. More important, microbiota-mediated protection against I/R-induced intestinal injury is abrogated in conventionally derived Nod2−/− mice and GF Nod2−/− mice. Also, WT mice raised in specific pathogen-free (SPF) conditions fared better against I/R-induced injury than SPF Nod2−/− mice. Moreover, SPF WT mice i.p. administered 10 mg/kg MDP were protected against injury compared with mice administered the inactive enantiomer, l-MDP, an effect lost in Nod2−/− mice. However, MDP administration failed to protect GF mice from I/R-induced intestinal injury compared with control, a phenomenon correlating with undetectable Nod2 mRNA level in the epithelium of GF mice. More important, the autophagy-inducer rapamycin protected Nod2−/− mice against I/R-induced injury and increased the levels of LC3+ puncta in injured tissue of Nod2−/− mice. These findings demonstrate that NOD2 protects against I/R and promotes wound healing, likely through the induction of the autophagy response.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The American Journal of Pathology - Volume 184, Issue 11, November 2014, Pages 2965-2975
نویسندگان
, , ,