کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5933894 | 1573404 | 2013 | 12 صفحه PDF | دانلود رایگان |
Barrett's esophagus corresponds to the replacement of the normal esophageal squamous epithelium by a columnar epithelium through a metaplastic process. This tissue remodeling is associated with chronic gastroesophageal reflux and constitutes a premalignant lesion leading to a 30- to 60-fold increase in the risk to evolve into esophageal adenocarcinoma. The present study aimed to investigate a possible immune evasion in Barrett's esophagus favoring esophageal adenocarcinoma development. We demonstrated that myeloid and plasmacytoid dendritic cells are recruited during the esophageal metaplasia-dysplasia-carcinoma sequence, through the action of their chemoattractants, macrophage inflammatory protein 3α and chemerin. Next, we showed that, in contrast to plasmacytoid dendritic cells, myeloid dendritic cells, co-cultured with Barrett's esophagus and esophageal adenocarcinoma cell lines, display a tolerogenic phenotype. Accordingly, myeloid dendritic cells co-cultured with esophageal adenocarcinoma cell lines stimulated regulatory T cell differentiation from naïve CD4+ T cells. In agreement with those results, we observed that both metaplastic areas and (pre)malignant lesions of the esophagus are infiltrated by regulatory T cells. In conclusion, soluble factors secreted by epithelial cells during the esophageal metaplasia-dysplasia-carcinoma sequence influence dendritic cell distribution and promote tumor progression by rendering them tolerogenic.
Journal: The American Journal of Pathology - Volume 182, Issue 6, June 2013, Pages 2168-2179