کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5938882 | 1573476 | 2007 | 10 صفحه PDF | دانلود رایگان |

Although studies blocking the Fas pathway indicate it can decrease organ damage while improving septic (cecal ligation and puncture, CLP) mouse survival, little is known about how Fas-Fas ligand (FasL) interactions mediate this protection at the tissue level. Here, we report that although Fas expression on splenocytes and hepatocytes is up-regulated by CLP and is inhibited by in vivo short interfering RNA, FasL as well as the frequency of CD8+ T cells are differentially altered by sepsis in the spleen (no change in FasL, decreased percentage of CD8+ and CD4+ T cells) versus the liver (increased FasL expression on CD8+ T cells and increase in percentage/number). Adoptive transfer of CLP FasL+/+ versus FasLâ/â mouse liver CD8+ T cells to severe combined immunodeficient or RAG1â/â recipient mice indicated that these cells could induce inflammation. The FasL-mediated cytotoxic capacity of these septic mouse liver CD8+ T cells was shown by their ability to damage directly cultured hepatocytes. Finally, although CD8â/â mice exhibited a reduction in both CLP-induced liver active caspase-3 staining and blood interleukin-6 levels, only FasLâ/â (but not CD8â/â) protected the septic mouse spleen from increasing apoptosis. Thus, although truncating Fas-FasL signaling ameliorates many untoward effects of sepsis, the pathological mode of action is distinct at the tissue level.
Journal: The American Journal of Pathology - Volume 171, Issue 1, July 2007, Pages 87-96