کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5948909 | 1172384 | 2012 | 11 صفحه PDF | دانلود رایگان |

ObjectiveIt is to characterize the underlying molecular mechanisms of the anti-atherosclerotic effects of hydrogen (dihydrogen; H2), a novel antioxidant. In particular, to examine the effects of hydrogen on athero-susceptibility in lipoproteins and aorta of apolipoprotein E knockout (apoEâ/â) mice.Methods and resultsPlasma analysis by enzymatic method and spectrophotometric measurement showed that eight weeks intraperitoneally injection of hydrogen-saturated saline remarkably decreased plasma total and non-high-density lipoprotein (non-HDL) cholesterol, and malondialdehyde in apoEâ/â mice fed either chow or high fat diet. Western blot analysis showed hydrogen treatment reduced the contents of apolipoprotein B (apoB), a major protein constituent of non-HDL in either plasma or hepatic tissues. Moreover, ELISA assay revealed that the production of tumor necrosis factor-α and interleukin-6 were significantly suppressed by hydrogen in RAW264.7 macrophages, after stimulation with the isolated non-HDL from treated or untreated mice. Immunohistochemistry of aortic valve sections revealed that hydrogen suppressed the expression of several proinflammatory factors and decreased vessel wall infiltration of macrophages. Besides, real-time PCR and Western blot analysis disclosed that hepatic scavenger receptor class B type I (SR-BI), ATP-binding cassette (ABC) transporters ABCG8, ABCB4, ABCB11, and macrophage SR-BI, were all induced by hydrogen treatment. Finally arterial wall lipid disposition displayed by oil red O staining was reduced significantly in aortic root and whole aorta en face in hydrogen administrated mice. In addition, hydrogen significantly improved HDL functionality in C57BL/6J mice assessed in two independent ways, namely (i) stimulation of cholesterol efflux from macrophage foam cells by measuring HDL-induced [3H]cholesterol efflux, and (ii) protection against LDL oxidation as a measure of Cu2+-induced TBARS formation.ConclusionThese results reveal that administration of hydrogen-saturated saline decreases athero-susceptibility in apoB-containing lipoprotein and aortic atherosclerosis in apoEâ/â mice and improves HDL functionality in C57BL/6J mice.
Journal: Atherosclerosis - Volume 221, Issue 1, March 2012, Pages 55-65