کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5985085 1178712 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiography; comparison with manual assessment and correlation with coronary artery disease
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiography; comparison with manual assessment and correlation with coronary artery disease
چکیده انگلیسی

BackgroundEpicardial adipose tissue (EAT) is emerging as a risk factor for coronary artery disease (CAD).ObjectiveThe aim of this study was to determine the applicability and efficiency of automated EAT quantification.MethodsEAT volume was assessed both manually and automatically in 157 patients undergoing coronary CT angiography. Manual assessment consisted of a short-axis-based manual measurement, whereas automated assessment on both contrast and non-contrast-enhanced data sets was achieved through novel prototype software. Duration of both quantification methods was recorded, and EAT volumes were compared with paired samples t test. Correlation of volumes was determined with intraclass correlation coefficient; agreement was tested with Bland-Altman analysis. The association between EAT and CAD was estimated with logistic regression.ResultsAutomated quantification was significantly less time consuming than automated quantification (17 ± 2 seconds vs 280 ± 78 seconds; P < .0001). Although manual EAT volume differed significantly from automated EAT volume (75 ± 33 cm³ vs 95 ± 45 cm³; P < .001), a good correlation between both assessments was found (r = 0.76; P < .001). For all methods, EAT volume was positively associated with the presence of CAD. Stronger predictive value for the severity of CAD was achieved through automated quantification on both contrast-enhanced and non-contrast-enhanced data sets.ConclusionAutomated EAT quantification is a quick method to estimate EAT and may serve as a predictor for CAD presence and severity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cardiovascular Computed Tomography - Volume 8, Issue 3, May–June 2014, Pages 215-221
نویسندگان
, , , , , , , , , , , ,