کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
599946 1454287 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Biosurfactant stabilized anticancer biomolecule-loaded poly (d,l-lactide) nanoparticles
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Biosurfactant stabilized anticancer biomolecule-loaded poly (d,l-lactide) nanoparticles
چکیده انگلیسی

PLA nanoparticles (NPs) were prepared via green route using turmeric (Curcuma longa) extract (TE) as biostabiliser/biosurfactant. Of the 29 formulations, two formulations of TE synthesized PLA NPs were evaluated for encapsulation and controlled release of well known antioxidant and less bioavailable molecules curcumin and quercetin. Size of curcumin loaded PLA NPs synthesized using 0.8 mg/ml PLA (C-En-D) and 0.1 mg/ml PLA (C-En-P) were 203 ± 77 and 110 ± 44 nm, respectively. However, quercetin loaded PLA NPs synthesized at 0.8 mg/ml (Q-En-D) and 0.1 mg/ml (Q-En-P) PLA concentrations were 170 ± 95 and 102 ± 31 nm, respectively. The encapsulation efficiency of curcumin loaded PLA (C-En-D and C-En-P) NPs as well as quercetin loaded PLA (Q-En-D and Q-En-P) NPs was found ∼95%. In vitro release study of C-En-D, C-En-P, Q-En-D and Q-En-P NPs showed initial burst release followed by slow and sustained release. C-En-D NPs and Q-En-D NPs showing maximum in vitro release (∼100%) were evaluated for cytotoxicity. Blank PLA NPs, C-En-D and Q-En-D NPs were found to be safe against normal human leukocytes up to 2 mg/ml dose. Both C-En-D and Q-En-D NPs showed anticancer activity against A549 cell line. But Q-En-D NPs showed better anticancer activity than C-En-D NPS on A549 cells. While blank PLA NPs did not possess anticancer activity. TE extract stabilized PLA NPs were non-toxic, biocompatible and safe to normal human leukocytes. Such technology will be better, effective and safer in use for anticancer as well as other biological application.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Colloids and Surfaces B: Biointerfaces - Volume 117, 1 May 2014, Pages 505–511
نویسندگان
, , , ,