کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
600400 1454301 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Accelerated nerve regeneration using induced pluripotent stem cells in chitin–chitosan–gelatin scaffolds with inverted colloidal crystal geometry
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Accelerated nerve regeneration using induced pluripotent stem cells in chitin–chitosan–gelatin scaffolds with inverted colloidal crystal geometry
چکیده انگلیسی

Polymeric biomaterials with regular pore structure can generate distinctive properties in various biomedical applications. This study presents scaffolds comprising chitin, chitosan, and gelatin with pore geometry of inverted colloidal crystals (ICC) for guiding differentiation of induced pluripotent stem (iPS) cells toward neurons. Chitin–chitosan–gelatin ICC scaffolds were fabricated by self-assembly, crosslinking, infiltration, dehydration, and particle leaching. The results revealed that ethanol as a dispersion medium yielded a higher regularity of colloidal template than ethylene glycol. For the adhesion of iPS cells, freeform constructs were more efficient than ICC constructs. The reverse was true for the viability of iPS cells. The quantity of stage-specific embryonic surface antigen-1 in cultured freeform construct was larger than that in cultured ICC construct, indicating that the former preserved more phenotypic characteristics of iPS cells than the latter. Moreover, β III tubulin-identified region in ICC construct was larger than that in freeform construct, demonstrating that the differentiation of iPS cells toward neurons in ICC construct was faster than that in freeform construct. ICC topography in chitin–chitosan–gelatin scaffolds can accelerate neuronal differentiation of iPS cells.

Figure optionsDownload as PowerPoint slideHighlights
► Ethanol yields a higher regularity of colloidal template than ethylene glycol.
► Freeform constructs are more efficient in the adhesion of iPS cells than ICC constructs.
► ICC constructs yield higher viability of iPS cells than freeform constructs.
► Freeform construct preserves more phenotypic iPS cells than ICC construct.
► Neuronal differentiation of iPS cells in ICC construct was faster than that in freeform construct.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Colloids and Surfaces B: Biointerfaces - Volume 103, 1 March 2013, Pages 595–600
نویسندگان
, ,