کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6023605 | 1580875 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Joint analysis of spikes and local field potentials using copula
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recent technological advances, which allow for simultaneous recording of spikes and local field potentials (LFPs) at multiple sites in a given cortical area or across different areas, have greatly increased our understanding of signal processing in brain circuits. Joint analysis of simultaneously collected spike and LFP signals is an important step to explicate how the brain orchestrates information processing. In this contribution, we present a novel statistical framework based on Gaussian copula to jointly model spikes and LFP. In our approach, we use copula to link separate, marginal regression models to construct a joint regression model, in which the binary-valued spike train data are modeled using generalized linear model (GLM) and the continuous-valued LFP data are modeled using linear regression. Model parameters can be efficiently estimated via maximum-likelihood. In particular, we show that our model offers a means to statistically detect directional influence between spikes and LFP, akin to Granger causality measure, and that we are able to assess its statistical significance by conducting a Wald test. Through extensive simulations, we also show that our method is able to reliably recover the true model used to generate the data. To demonstrate the effectiveness of our approach in real setting, we further apply the method to a mixed neural dataset, consisting of spikes and LFP simultaneously recorded from the visual cortex of a monkey performing a contour detection task.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 133, June 2016, Pages 457-467
Journal: NeuroImage - Volume 133, June 2016, Pages 457-467
نویسندگان
Meng Hu, Mingyao Li, Wu Li, Hualou Liang,