کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6024971 | 1580895 | 2015 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Head motion during functional MRI (fMRI) scanning can induce spurious findings and/or harm detection of true effects. Solutions have been proposed, including deleting ('scrubbing') or regressing out ('spike regression') motion volumes from fMRI time-series. These strategies remove motion-induced signal variations at the cost of destroying the autocorrelation structure of the fMRI time-series and reducing temporal degrees of freedom. ICA-based fMRI denoising strategies overcome these drawbacks but typically require re-training of a classifier, needing manual labeling of derived components (e.g. ICA-FIX; Salimi-Khorshidi et al. (2014)). Here, we propose an ICA-based strategy for Automatic Removal of Motion Artifacts (ICA-AROMA) that uses a small (n = 4), but robust set of theoretically motivated temporal and spatial features. Our strategy does not require classifier re-training, retains the data's autocorrelation structure and largely preserves temporal degrees of freedom. We describe ICA-AROMA, its implementation, and initial validation. ICA-AROMA identified motion components with high accuracy and robustness as illustrated by leave-N-out cross-validation. We additionally validated ICA-AROMA in resting-state (100 participants) and task-based fMRI data (118 participants). Our approach removed (motion-related) spurious noise from both rfMRI and task-based fMRI data to larger extent than regression using 24 motion parameters or spike regression. Furthermore, ICA-AROMA increased sensitivity to group-level activation. Our results show that ICA-AROMA effectively reduces motion-induced signal variations in fMRI data, is applicable across datasets without requiring classifier re-training, and preserves the temporal characteristics of the fMRI data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 112, 15 May 2015, Pages 267-277
Journal: NeuroImage - Volume 112, 15 May 2015, Pages 267-277
نویسندگان
Raimon H.R. Pruim, Maarten Mennes, Daan van Rooij, Alberto Llera, Jan K. Buitelaar, Christian F. Beckmann,