کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6026137 1188677 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimising beamformer regions of interest analysis
ترجمه فارسی عنوان
بهینه سازی مناطق پرتوی فرمور از تجزیه و تحلیل مورد علاقه
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی
Beamforming is a spatial filtering based source reconstruction method for EEG and MEG that allows the estimation of neuronal activity at a particular location within the brain. The computation of the location specific filter depends solely on an estimate of the data covariance matrix and on the forward model. Increasing the number of M/EEG sensors, increases the quantity of data required for accurate covariance matrix estimation. Often however we have a prior hypothesis about the site of, or the signal of interest. Here we show how this prior specification, in combination with optimal estimations of data dimensionality, can give enhanced beamformer performance for relatively short data segments. Specifically we show how temporal (Bayesian Principal Component Analysis) and spatial (lead field projection) methods can be combined to produce improvements in source estimation over and above employing the approaches individually.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 102, Part 2, 15 November 2014, Pages 945-954
نویسندگان
, , , , ,