کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6027233 1580909 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Event time analysis of longitudinal neuroimage data
ترجمه فارسی عنوان
تجزیه و تحلیل زمان رویداد داده های تصویری طولی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی


- A novel method to analyze longitudinal image and event time data
- Combines the linear mixed effects and extended Cox frameworks
- We illustrate, validate and benchmark the proposed method.
- These tools will be freely available in FreeSurfer.

This paper presents a method for the statistical analysis of the associations between longitudinal neuroimaging measurements, e.g., of cortical thickness, and the timing of a clinical event of interest, e.g., disease onset. The proposed approach consists of two steps, the first of which employs a linear mixed effects (LME) model to capture temporal variation in serial imaging data. The second step utilizes the extended Cox regression model to examine the relationship between time-dependent imaging measurements and the timing of the event of interest. We demonstrate the proposed method both for the univariate analysis of image-derived biomarkers, e.g., the volume of a structure of interest, and the exploratory mass-univariate analysis of measurements contained in maps, such as cortical thickness and gray matter density. The mass-univariate method employs a recently developed spatial extension of the LME model. We applied our method to analyze structural measurements computed using FreeSurfer, a widely used brain Magnetic Resonance Image (MRI) analysis software package. We provide a quantitative and objective empirical evaluation of the statistical performance of the proposed method on longitudinal data from subjects suffering from Mild Cognitive Impairment (MCI) at baseline.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 97, 15 August 2014, Pages 9-18
نویسندگان
, , , , , ,