| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6027431 | 1580915 | 2014 | 13 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A novel meta-analytic approach: Mining frequent co-activation patterns in neuroimaging databases
												
											ترجمه فارسی عنوان
													یک رویکرد جدید متاآنالیز: الگوهای همکاری فعال سازی معادن در پایگاههای اطلاعاتی عصبی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													علوم زیستی و بیوفناوری
													علم عصب شناسی
													علوم اعصاب شناختی
												
											چکیده انگلیسی
												In recent years, coordinate-based meta-analyses have become a powerful and widely used tool to study co-activity across neuroimaging experiments, a development that was supported by the emergence of large-scale neuroimaging databases like BrainMap. However, the evaluation of co-activation patterns is constrained by the fact that previous coordinate-based meta-analysis techniques like Activation Likelihood Estimation (ALE) and Multilevel Kernel Density Analysis (MKDA) reveal all brain regions that show convergent activity within a dataset without taking into account actual within-experiment co-occurrence patterns. To overcome this issue we here propose a novel meta-analytic approach named PaMiNI that utilizes a combination of two well-established data-mining techniques, Gaussian mixture modeling and the Apriori algorithm. By this, PaMiNI enables a data-driven detection of frequent co-activation patterns within neuroimaging datasets. The feasibility of the method is demonstrated by means of several analyses on simulated data as well as a real application. The analyses of the simulated data show that PaMiNI identifies the brain regions underlying the simulated activation foci and perfectly separates the co-activation patterns of the experiments in the simulations. Furthermore, PaMiNI still yields good results when activation foci of distinct brain regions become closer together or if they are non-Gaussian distributed. For the further evaluation, a real dataset on working memory experiments is used, which was previously examined in an ALE meta-analysis and hence allows a cross-validation of both methods. In this latter analysis, PaMiNI revealed a fronto-parietal “core” network of working memory and furthermore indicates a left-lateralization in this network. Finally, to encourage a widespread usage of this new method, the PaMiNI approach was implemented into a publicly available software system.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 90, 15 April 2014, Pages 390-402
											Journal: NeuroImage - Volume 90, 15 April 2014, Pages 390-402
نویسندگان
												Julian Caspers, Karl Zilles, Christoph Beierle, Claudia Rottschy, Simon B. Eickhoff, 
											