کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6029108 | 1580923 | 2013 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel approach to predict subjective pain perception from single-trial laser-evoked potentials
ترجمه فارسی عنوان
روش جدیدی برای پیش بینی احساس درد ذهنی از تک محاکمه پتانسیل لیزر برانگیخته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
چکیده انگلیسی
Pain is a subjective first-person experience, and self-report is the gold standard for pain assessment in clinical practice. However, self-report of pain is not available in some vulnerable populations (e.g., patients with disorders of consciousness), which leads to an inadequate or suboptimal treatment of pain. Therefore, the availability of a physiology-based and objective assessment of pain that complements the self-report would be of great importance in various applications. Here, we aimed to develop a novel and practice-oriented approach to predict pain perception from single-trial laser-evoked potentials (LEPs). We applied a novel single-trial analysis approach that combined common spatial pattern and multiple linear regression to automatically and reliably estimate single-trial LEP features. Further, we adopted a Naïve Bayes classifier to discretely predict low and high pain and a multiple linear prediction model to continuously predict the intensity of pain perception from single-trial LEP features, at both within- and cross-individual levels. Our results showed that the proposed approach provided a binary prediction of pain (classification of low pain and high pain) with an accuracy of 86.3 ± 8.4% (within-individual) and 80.3 ± 8.5% (cross-individual), and a continuous prediction of pain (regression on a continuous scale from 0 to 10) with a mean absolute error of 1.031 ± 0.136 (within-individual) and 1.821 ± 0.202 (cross-individual). Thus, the proposed approach may help establish a fast and reliable tool for automated prediction of pain, which could be potentially adopted in various basic and clinical applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 81, 1 November 2013, Pages 283-293
Journal: NeuroImage - Volume 81, 1 November 2013, Pages 283-293
نویسندگان
G. Huang, P. Xiao, Y.S. Hung, G.D. Iannetti, Z.G. Zhang, L. Hu,