کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6037406 | 1188787 | 2010 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Ten simple rules for dynamic causal modeling
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
DCMBMSEffective connectivity - اتصال موثرBayesian model selection - انتخاب مدل بیزیMEG - بهfMRI - تصویرسازی تشدید مغناطیسی کارکردیNonlinear Dynamics - دینامیک غیرخطیBayes factor - فاکتور BayesModel evidence - مدرک مدلModel comparison - مقایسه مدلEEG - نوار مغزیSynaptic plasticity - پلاستیسیته سیناپسی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and their context-dependent modulation. DCM is increasingly used in the analysis of a wide range of neuroimaging and electrophysiological data. Given the relative complexity of DCM, compared to conventional analysis techniques, a good knowledge of its theoretical foundations is needed to avoid pitfalls in its application and interpretation of results. By providing good practice recommendations for DCM, in the form of ten simple rules, we hope that this article serves as a helpful tutorial for the growing community of DCM users.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 49, Issue 4, 15 February 2010, Pages 3099-3109
Journal: NeuroImage - Volume 49, Issue 4, 15 February 2010, Pages 3099-3109
نویسندگان
K.E. Stephan, W.D. Penny, R.J. Moran, H.E.M. den Ouden, J. Daunizeau, K.J. Friston,