کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6089396 | 1208543 | 2016 | 9 صفحه PDF | دانلود رایگان |
- Diet is a major environmental source of AGEs in humans.
- Dietary AGEs are correlated with serum and tissue levels of AGEs.
- Food-derived AGEs may play a role in CVD and CKD.
- Dietary AGEs may cause insulin resistance.
Reactive derivatives from nonenzymatic glucose-protein condensation reactions, as well as lipids and nucleic acids exposed to reducing sugars, form a heterogeneous group of irreversible adducts called AGEs (advanced glycation end products). The glycation process begins with the conversion of reversible Schiff base adducts to more stable, covalently bound Amadori rearrangement products. Over the course of days to weeks, these Amadori products undergo further rearrangement and condensation reactions to form irreversibly cross-linked macroprotein derivatives known as AGEs. The formation and accumulation of AGEs have been known to progress in a physiological aging process and at an accelerated rate under hyperglycemic and oxidative stress conditions. There is growing evidence that AGEs play a pathologic role in numerous disorders. Indeed, glycation and/or cross-linking modification of circulating or organic matrix proteins by AGEs the senescence of moieties and deteriorate their physiological function and structural integrity in multiple organ systems. Moreover, AGEs elicit oxidative stress and inflammatory reactions through the interaction with the receptor for advanced glycation products in a variety of cells, thereby contributing to the development and progression of various aging- or diabetes-related disorders, such as cardiovascular disease, chronic kidney disease, insulin resistance, and Alzheimer's disease. Recently, diet has been recognized as a major environmental source of AGEs that could cause proinflammatory reactions and organ damage in vivo. Therefore, this review summarizes the pathophysiological role of dietary AGEs in health and disease, especially focusing on cardiometabolic disorders. We also discuss the potential utility in targeting exogenously derived AGEs for therapeutic intervention.
Journal: Nutrition - Volume 32, Issue 2, February 2016, Pages 157-165