کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6117691 1591759 2015 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lipopolysaccharide loss produces partial colistin dependence and collateral sensitivity to azithromycin, rifampicin and vancomycin in Acinetobacter baumannii
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی میکروبیولوژی و بیوتکنولوژی کاربردی
پیش نمایش صفحه اول مقاله
Lipopolysaccharide loss produces partial colistin dependence and collateral sensitivity to azithromycin, rifampicin and vancomycin in Acinetobacter baumannii
چکیده انگلیسی
Treatment options for multidrug-resistant (MDR) strains of Acinetobacter baumannii that acquire resistance to colistin are limited. Acinetobacter baumannii can become highly resistant to colistin through complete loss of lipopolysaccharide (LPS) owing to mutations in the genes encoding the first three enzymes involved in lipid A biosynthesis (lpxA, lpxC and lpxD). The objective of this study was to characterise the susceptibility to 15 clinically relevant antibiotics and 6 antimicrobial peptides (AMPs) of MDR A. baumannii clinical isolates that acquired colistin resistance due to mutations in lpxA, lpxC and lpxD as well as their colistin-susceptible counterparts. A dramatic increase in antibiotic susceptibility (≥16-fold increase) was observed upon LPS loss for azithromycin, rifampicin and vancomycin, whereas a moderate increase in susceptibility was seen for amikacin, ceftazidime, imipenem, cefepime and meropenem. Importantly, concentrations ranging from 8 mg/L to 32 mg/L of the six AMPs were able to reduce bacterial viability by ≥3 log10 in growth curve assays. We also demonstrate that colistin resistance results in partial colistin dependence for growth in LPS-deficient strains containing mutations in lpxA, lpxC and lpxD, but not when colistin resistance occurs via LPS modification due to mutations in the PmrA/B two-component system. The results of this study indicate that loss of LPS expression results in collateral sensitivity to azithromycin, rifampicin and vancomycin, and that the six AMPs tested retain activity against LPS-deficient strains, indicating that these antibiotics may be viable treatment options for infections caused by these strains.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Antimicrobial Agents - Volume 46, Issue 6, December 2015, Pages 696-702
نویسندگان
, , , , , ,