کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
616680 | 881515 | 2007 | 4 صفحه PDF | دانلود رایگان |

The friction of diamond and diamond-like carbon (DLC) materials was evaluated in reciprocating sliding wear testing under controlled relative humidity. The testing conditions were a displacement stroke of 100 μm, an oscillatory frequency of 8 Hz and a normal load of 2 N. The coefficient of friction of diamond and hydrogen-free DLC (a-C) coatings against a corundum sphere in the steady regime decreased with an increase in relative humidity. A water layer physisorbed at the interface between the mating surfaces played two major roles: acting as a lubricant and increasing the true area of contact. However, it was noticed that the friction coefficient of the hydrogenated DLC (a-C:H) coatings first increased and then decreased with increasing relative humidity in the steady state. There appeared to be a critical relative humidity for the a-C:H coatings, at which the steady-state friction reached the maximum value. The frictional behaviour of the a-C:H coatings also showed dependence on the wear test duration. The interaction between hydrogen and oxygen at the interface between the a-C:H coating and water layer was mainly responsible for such behaviour.
Journal: Tribology International - Volume 40, Issue 2, February 2007, Pages 216–219