کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
622815 1455314 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Technical and economic evaluation of freshwater production from a wind-powered small-scale seawater reverse osmosis system (WP-SWRO)
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Technical and economic evaluation of freshwater production from a wind-powered small-scale seawater reverse osmosis system (WP-SWRO)
چکیده انگلیسی


• Penetration of wind power for reverse osmosis desalination has been analyzed.
• Cost calculations of energy and water production have been calculated by levelised cost method.
• Wind-powered freshwater production is economically and technically reasonable for site.
• Off-grid desalination systems have 2-3 times higher LCOW value than grid connected-wind turbine.
• High penetration of wind energy for desalination can greatly reduce the CO2 emissions and energy cost.

Wind-powered desalination is an attractive and sustainable method for providing potable water in isolated arid and coastal zones and islands. In this study, a techno-economic analysis of a wind-powered small-scale seawater reverse osmosis system (WP-SWRO) is presented. Levelised unit costs for electricity and water (LCOE and LCOW) were estimated for Gökçeada Island, Turkey. The energy requirement of the system showed that water can be produced at a cost between US$2.962 and US$6.457 $/m3 for all wind turbines (with rated capacities ranging from 6 kW to 30 kW) at various discount rates when considering off-grid operations. For a grid connected-wind turbine system, the levelised cost of water was predicted to be in the range from US$0.866 to US$2.846/m3. The levelised costs of electricity are predicted to be US$0.077 to US$0.155/kWh for an 8% discount rate using a 30-kW wind turbine based on the turbine-specific cost. According to the results from an emission reduction analysis, using a 30-kW wind turbine for a reverse osmosis system permits a reduction of 80.028 tonnes of CO2 annually. The results show that wind-powered potable water production is economically and technically reasonable for the site.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Desalination - Volume 381, 1 March 2016, Pages 47–57
نویسندگان
, ,