کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6262413 | 1613796 | 2016 | 11 صفحه PDF | دانلود رایگان |

- Ischemia-reperfusion (IR) injury increased Drp1 activation and Cytochrome C release.
- Hypothermia significantly attenuated brain IR injury by reduce cell apoptosis.
- Hypothermia inhibited IR-induced elevated Drp1 activation, and Cytochrome C release to cytosol.
Excessive mitochondrial fission activation has been implicated in cerebral ischemia-reperfusion (IR) injury. Hypothermia is effective in preventing cerebral ischemic damage. However, effects of hypothermia on ischemia-induced mitochondrial fission activation is not well known. Therefore, the aim of this study was to investigate whether hypothermia protect the brain by inhibiting mitochondrial fission-related proteins activation following cerebral IR injury. Adult male C57BL/6 mice were subjected to transient forebrain ischemia induced by 15 min of bilateral common carotid artery occlusion (BCCAO). Mice were divided into three groups (n=48 each): Hypothermia (HT) group, with mild hypothermia (32-34 °C) for 4 h; Normothermia (NT) group, similarly as HT group except for cooling; Sham group, with vessels exposed but without occlusion or cooling. Hematoxylin and eosin (HE), Nissl staining, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and behavioral testing (n=6 each) demonstrated that hypothermia significantly decreased ischemia-induced neuronal injury. The expressions of Dynamin related protein 1 (Drp1) and Cytochrome C (Cyto C) (n=6 each) in mice hippocampus were measured at 3, 6, 24, and 72 h of reperfusion. IR injury significantly increased expressions of total Drp1, phosphorylated Drp1 (P-Drp1 S616) and Cyto C under normothermia. However, mild hypothermia inhibited Drp1 activation and Cyto C cytosolic release, preserved neural cells integrity and reduced neuronal necrosis and apoptosis. These findings indicated that mild hypothermia-induced neuroprotective effects against ischemia-reperfusion injury is associated with suppressing mitochondrial fission-related proteins activation and apoptosis execution.
Journal: Brain Research - Volume 1646, 1 September 2016, Pages 73-83