کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6273696 1614799 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of a cell-based treatment for long-term neurotrophin expression and spiral ganglion neuron survival
ترجمه فارسی عنوان
توسعه یک درمان مبتنی بر سلول برای بیان طولانی مدت نوروتروفین و بقای نرون گانگلیونی مارپیچی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
چکیده انگلیسی
Spiral ganglion neurons (SGNs), the target cells of the cochlear implant, undergo gradual degeneration following loss of the sensory epithelium in deafness. The preservation of a viable population of SGNs in deafness can be achieved in animal models with exogenous application of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3. For translation into clinical application, a suitable delivery strategy that provides ongoing neurotrophic support and promotes long-term SGN survival is required. Cell-based neurotrophin treatment has the potential to meet the specific requirements for clinical application, and we have previously reported that Schwann cells genetically modified to express BDNF can support SGN survival in deafness for 4 weeks. This study aimed to investigate various parameters important for the development of a long-term cell-based neurotrophin treatment to support SGN survival. Specifically, we investigated different (i) cell types, (ii) gene transfer methods and (iii) neurotrophins, in order to determine which variables may provide long-term neurotrophin expression and which, therefore, may be the most effective for supporting long-term SGN survival in vivo. We found that fibroblasts that were nucleofected to express BDNF provided the most sustained neurotrophin expression, with ongoing BDNF expression for at least 30 weeks. In addition, the secreted neurotrophin was biologically active and elicited survival effects on SGNs in vitro. Nucleofected fibroblasts may therefore represent a method for safe, long-term delivery of neurotrophins to the deafened cochlea to support SGN survival in deafness.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 277, 26 September 2014, Pages 690-699
نویسندگان
, , , , ,