کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6274382 1614822 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Interneurons containing somatostatin are affected by learning-induced cortical plasticity
ترجمه فارسی عنوان
اینترنئورونهایی که حاوی سموتوستاتین هستند، تحت تاثیر پلاستیک ناشی از یادگیری قارچی قرار دارند
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
چکیده انگلیسی
The maintenance of neural circuit stability is a dynamic process that requires the plasticity of many cellular and synaptic components. By changing the excitatory/inhibitory balance, inhibitory GABAergic plasticity can regulate excitability, and contribute to neural circuit function and refinement in learning and memory. Increased inhibitory GABAergic neurotransmission has been shown in brain structures involved in the learning process. Previously, we showed that classical conditioning in which tactile stimulation of one row of vibrissae (conditioned stimulus, CS) was paired with a tail shock (unconditioned stimulus, UCS) in adult mice results in the increased density of GABAergic interneurons and increased expression of glutamic acid decarboxylase (GAD)-67 in barrels of the “trained” row cortical representation. In inhibitory neurons of the rat cortex GAD co-localizes with several proteins and peptides. We found previously that the density of the parvalbumin (GAD+/Prv+)-containing subpopulation is not changed after conditioning. In the present study, we examined GABAergic somatostatin (Som)-, calbindin (CB)- and calretinin (CR)-positive interneurons in the cortical representation of “trained” vibrissae after training. Cells showing double immunostaining for GAD/Som, GAD/CR and GAD/CB were counted in the barrels representing vibrissae activated during the training and in control, untouched rows. We found a substantial increase of GAD/Som-containing cells in the trained row representation. No changes in the density of GAD/CR or GAD/CB neurons were observed. These results suggest that Som-containing interneurons are involved in learning-induced changes in the inhibitory cortical network.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 254, 19 December 2013, Pages 18-25
نویسندگان
, , , , , ,