کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
62758 | 47654 | 2008 | 9 صفحه PDF | دانلود رایگان |

Postnitridation annealing has a remarkable effect on the surface property and photocatalytic performance of N-doped TiO2 for photocatalytic oxidation of ethylene. The activity of N-doped TiO2 under visible light illumination (λ>420 nmλ>420 nm) can be enhanced fourfold by annealing the sample at 400 °C. Characterization results show that the thermal annealing reduces surface oxygen vacancies, removes surface-adsorbed NH3, and facilitates the adsorption of molecular oxygen on catalyst surface. Such a surface reconstruction contributes to the enhanced photocatalytic activity of the N-doped TiO2. The postcalcination also improves the photocatalytic stability of the N-doped TiO2 by stabilizing nitrogen atoms in the TiO2 lattice. A N-doped TiO2 sample without postcalcination suffers from a gradual deactivation, due mainly to the passivation of the catalyst surface by oxidized nitrogen species (e.g., hyponitrite, nitrite ions, and nitrate ions) formed during the photocatalytic degradation of ethylene.
Journal: Journal of Catalysis - Volume 255, Issue 1, 1 April 2008, Pages 59–67