کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6277474 1295759 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transmitter phenotypes of commissural interneurons in the lamprey spinal cord
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Transmitter phenotypes of commissural interneurons in the lamprey spinal cord
چکیده انگلیسی
The fundamental network for locomotion in all vertebrates contains a central pattern generator or CPG that produces the required motor output in the spinal cord. In the lamprey spinal cord different classes of interneuron's forming the core CPG circuitry have been characterized based on their morphological and electrophysiological features. The commissural interneuron's (C-INs) represent one essential component of CPG that have been implicated in controlling left-right alternation of the motor activity during swimming. However, it is still unclear if the C-INs displays a homogenous neurotransmitter phenotype and how they are distributed. In this paper we investigated the segmental distribution of glycine, glutamate and GABA-immunoreactive (ir) C-INs by combining retrograde Neurobiotin tracing with specific antibodies for these transmitters. The C-INs were more abundant in caudal and rostral segments adjacent to the injection site and their number gradually decreased in more distal segments, suggesting that these interneurons project over a short distance. The glycine-ir neurons represented around 50% of the total C-INs, while glutamate-ir neurons represented only 29%. Both types of C-INs were homogenously distributed over different segments along the spinal cord. Finally, no Neurobiotin labeled C-INs displayed GABA-ir, although many interneurons were ir to GABA, suggesting that GABAergic interneurons are not directly responsible for controlling left-right alternation of activity during locomotion in lamprey. Overall, these results show that the C-INs display a gradual rostrocaudal distribution and consist of both glycine- and glutamate-ir neurons. The difference in the proportion of inhibitory and excitatory C-INs represents an anatomical substrate that can ensure the predominance of alternating activity during locomotion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 164, Issue 3, 15 December 2009, Pages 1057-1067
نویسندگان
, , ,