کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6285373 | 1296813 | 2010 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Manual rat sleep classification in principal component space
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A simple method is described for using principal component analysis (PCA) to score rat sleep recordings as awake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep. PCA was used to reduce the dimensionality of the features extracted from each epoch to three, and the projections were then graphed in a scatterplot where the clusters were visually apparent. The clusters were then directly manually selected, classifying the entire recording at once. The method was tested in a set of ten 24-h rat sleep electroencephalogram (EEG) and electromyogram (EMG) recordings. Classifications by two human raters performing traditional epoch-by-epoch scoring were blindly compared with classifications by another two human raters using the new PCA method. Overall inter-rater median percent agreements ranged between 93.7% and 94.9%. Median Cohen's kappa coefficient ranged from 0.890 to 0.909. The PCA method on average required about 5Â min for classification of each 24-h recording. The combination of good accuracy and reduced time compared to traditional sleep scoring suggests that the method may be useful for sleep research.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience Letters - Volume 469, Issue 1, 18 January 2010, Pages 97-101
Journal: Neuroscience Letters - Volume 469, Issue 1, 18 January 2010, Pages 97-101
نویسندگان
Timothy P. Gilmour, Jidong Fang, Zhiwei Guan, Thyagarajan Subramanian,