کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6294576 1617149 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
ترجمه فارسی عنوان
ارزیابی مقایسه ای رگرسیون بردار پشتیبانی، شبکه های عصبی مصنوعی و جنگل های تصادفی برای پیش بینی و ارزیابی ذخایر کربن آلی خاک در یک چشم انداز افمونتان
کلمات کلیدی
جنگل های تصادفی، شبکه های عصبی مصنوعی، رگرسیون بردار پشتیبانی، کربن آلاینده خاک نقشه برداری خاک دیجیتال، شرق میو، کنیا،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی
Soil organic carbon (SOC) is a key indicator of ecosystem health, with a great potential to affect climate change. This study aimed to develop, evaluate, and compare the performance of support vector regression (SVR), artificial neural network (ANN), and random forest (RF) models in predicting and mapping SOC stocks in the Eastern Mau Forest Reserve, Kenya. Auxiliary data, including soil sampling, climatic, topographic, and remotely-sensed data were used for model calibration. The calibrated models were applied to create prediction maps of SOC stocks that were validated using independent testing data. The results showed that the models overestimated SOC stocks. Random forest model with a mean error (ME) of −6.5 Mg C ha−1 had the highest tendency for overestimation, while SVR model with an ME of −4.4 Mg C ha−1 had the lowest tendency. Support vector regression model also had the lowest root mean squared error (RMSE) and the highest R2 values (14.9 Mg C ha−1 and 0.6, respectively); hence, it was the best method to predict SOC stocks. Artificial neural network predictions followed closely with RMSE, ME, and R2 values of 15.5, −4.7, and 0.6, respectively. The three prediction maps broadly depicted similar spatial patterns of SOC stocks, with an increasing gradient of SOC stocks from east to west. The highest stocks were on the forest-dominated western and north-western parts, while the lowest stocks were on the cropland-dominated eastern part. The most important variable for explaining the observed spatial patterns of SOC stocks was total nitrogen concentration. Based on the close performance of SVR and ANN models, we proposed that both models should be calibrated, and then the best result applied for spatial prediction of target soil properties in other contexts.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Indicators - Volume 52, May 2015, Pages 394-403
نویسندگان
, , , ,