کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6321923 | 1619724 | 2016 | 13 صفحه PDF | دانلود رایگان |
- Characterization of hospital effluent in terms of concentrations of 38 pharmaceuticals
- Predicted and measured concentrations analyzed
- A good agreement was found for 4 (summer) and 5 (winter) compounds.
- Sampling mode greatly influences measured concentrations.
- Excretion factor and wastewater flow rate mostly influence predicted concentrations.
This study deals with the chemical characterization of hospital effluents in terms of the predicted and measured concentrations of 38 pharmaceuticals belonging to 11 different therapeutic classes. The paper outlines the strengths and weaknesses of the two approaches through an analysis of a case study referring to a large hospital. It highlights the observed (and expected) ranges of variability for the parameters of the adopted model, presents the results of an uncertainty analysis of direct measurements (due to sampling mode and frequency and chemical analysis) and a sensitivity analysis of predicted concentrations (based on the annual consumption of pharmaceuticals, their excretion rate and annual wastewater volume generated by the hospital). Measured concentrations refer to two sampling campaigns carried out in summer and winter in order to investigate seasonal variability of the selected compounds. Predicted concentrations are compared to measured ones in the three scenarios: summer, winter and the whole year.It was found that predicted and measured concentrations are in agreement for a limited number of compounds (namely atenolol, atorvastatin and hydrochlorothiazide), and for most compounds the adoption of the model leads to a large overestimation in all three periods. Uncertainties in predictions are mainly due to the wastewater volume and excretion factor, whereas for measured concentrations, uncertainties are mainly due to sampling mode.
400
Journal: Science of The Total Environment - Volume 565, 15 September 2016, Pages 82-94